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Energy fluctuations of pseudointegrable systems with growing surface roughness
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~Received 10 June 2001; revised manuscript received 6 August 2001; published 30 October 2001!

The eigenfrequencies of two-dimensional systems with fractal boundaries and with nonscaling rough bound-
aries are calculated numerically by the Lanczos algorithm and analyzed by means of level statistics. The
systems are pseudointegrable and the fluctuations of their eigenvalue spectra show a global statistical behavior
between the Poisson and the Wigner distributions. With increasing irregularity of the boundary, the systems
approach the Wigner limit and the results seem to depend only on the genus number of the geometry and not
on details, such as the asymptotic shape of the geometry, the type of roughness~scaling or nonscaling!, and the
boundary conditions~Neumann or Dirichlet!. No transition between localized and extended states is found in
fractal drums.
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I. INTRODUCTION

The vibrational behavior of geometrically irregular o
jects has been a subject of considerable interest. This inte
arises from both a fundamental and a practical point of vie
because many systems with strongly irregular geometries
ist in nature. Their physical properties, such as, e.g., t
vibrational or electronic behavior, differ in many cases fro
those of their regular counterparts. Fractal geometry@1# per-
mits a description of many irregular systems as well-defin
geometrical objects, if the physical properties of the cons
ered objects are due to the hierarchical character of t
geometry@2#.

Here, we are interested in the vibrational and electro
behavior of surface fractals~‘‘fractal drums’’! @3#. These are
normal Euclidean systems, whose boundaries have fra
shapes. Their vibrational excitations have been referred t
‘‘Dirichlet fractinos’’ or ‘‘Neumann fractinos,’’ depending
on their boundary conditions. Their energy spectra and lo
ization properties are clearly distinct from those of syste
with smooth boundaries. This has been demonstrated by
merical simulations@4–6# as well as by experiments on liq
uid crystal films @6# and on acoustic cavities@7#. Among
other things, we are interested in the localization proper
of fractal drums, which are most important when applied
real systems. For example, the nanostructures in po
silica can be modeled to some extent by fractal drums un
Dirichlet boundary conditions,C50, along the boundary. In
this case, the relevant electron states are localized, in
sense that they occupy only a small portion of the total s
tem volume. This leads to a broadening of the band gap
could explain the observed luminescence of porous silica@8#.
When considering the vibrational modes in irregular mac
scopic fractal-shaped acoustic cavities and membrane
was also found that localization effects have important c
sequences for the acoustic behavior. When this localiza
is enhanced, viscous damping is increased@7,9#.

In this paper, the electronic and vibrational properties
fractal drums are studied by the methods of level statist
which is an important tool in quantum chaos. We concentr
on those fractal drums that have been used earlier in R
@4–9#. First, we want to see if the states that occupy o
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some percent of the total system are really localized, i.e
their localization lengths approach a constant when the
tem size is increased. Second, fractal drums are so-ca
pseudointegrable systems@10,11# ~see below!, which are
geometrically intermediate between regular and chaotic s
tems. Although pseudointegrable systems have attracted
of attention in recent years@12–14#, up to now, only rela-
tively simple pseudointegrable systems have been inve
gated. These systems showed comparatively small sur
roughness. The boundaries were nonfractal and no local
states occurred. For a particular pseudointegrable geom
where the chaotic Sinai shape was approached by a ce
number of corners, it was found numerically that with gro
ing surface roughness the systems showed more and m
chaotic behavior@14#. The analysis was restricted to the low
frequency spectrum and it is not yet clear if the results
also valid in the regime where the wavelengths are sm
enough to resolve the edges. In this paper we want to inv
tigate the energy fluctuations of the whole high-energy sp
trum and see if details of the geometry, like, e.g., the frac
shape or the asymptotic shape of the system, have some
cific consequences or if the behavior of the level statis
depends solely on the number of edges. For this purp
several pseudointegrable systems of various geometries
compared to the fractal drums. The paper is organized
follows. In Sec. II, the model systems and the various geo
etries are explained. In Sec. III, the density of states of
fractal drums is shown. Finally, in Sec. IV, the level statist
results for the fractal drums and several other systems u
Dirichlet and Neumann boundary conditions are compa
and discussed.

II. MODEL SYSTEMS

Let us consider a membrane that lies in thexy plane and
vibrates in thez direction. When the restoring forces a
considered as scalar, the vibrations of this membrane
described by the Helmholtz equation

DCn~x,y!52
vn

2

c2
Cn~x,y!, ~1!
©2001 The American Physical Society40-1
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STEFANIE RUSS PHYSICAL REVIEW E 64 056240
whereCn(x,y) is the nth eigenfunction,en[vn
2 the corre-

sponding eigenvalue, andc the sound velocity of the mem
brane. This equation has the same form as the statio
Schrödinger equation with zero potentialV50 inside the
drum. Therefore, under Dirichlet boundary conditions, wh
refer to infinite potential on the boundary it can also descr
an electron in an infinite potential well. In this case, one h
to replacevn

2/c2 by 2mEn /\2, wherem is the electron mass
andEn the energy eigenvalue.

For the numerical calculations, Eq.~1! is discretized on a
square lattice. At each lattice pointi, we put identical masse
m, which are coupled by linear nearest-neighbor springk.
The discretized form of Eq.~1! can be written as (c2

5k/m)

k

m
@Cn~ i 11,j !1Cn~ i 21,j !1Cn~ i , j 11!1Cn~ i , j 21!

24Cn~ i , j !#52vn
2Cn~ i , j !, ~2!

where the neighbor termsCn( i 61,j ), Cn( i , j 61) are the
values of the discretized eigenfunctionCn at neighboring
sites ofCn( i , j ). Equations~1! and ~2! are connected by a
second order Taylor expansion of the neighbor terms. T
problem can be reduced to the diagonalization of a symm
ric matrix, which is carried out by the Lanczos algorith
@15#, a numerical procedure to compute eigenvalues
eigenvectors of sparseN3N matrices by reducing them it
eratively to a tridiagonal form, for which effective algo
rithms exist. The eigenvalues of several rough geometries
calculated numerically over the whole frequency range un
Dirichlet and Neumann boundary conditions and their sp
tra are analyzed systematically by means of level statis
In Fig. 1 the fractal drums under study are shown; they
characterized by their boundaries. Here, the same bound
as in Refs.@4–9# are used. To obtain the fractal drums, t
generator@cf. Fig. 1~a!# is applied several times to two dif
ferent sides of a regular square. As a result, we get nons
metric fractal drums of different generationsn ~with n up to
3 in this work! and therefore different stages of surfa
roughness. For the study of the localization properties, la
drums are also studied, as shown in Fig. 1~c! for the first
generation. In Fig. 2 simpler systems with varying geome
and surface roughness are shown that are studied for c
parison. For technical reasons to do with the Lanczos a
rithm, all systems are unsymmetric.

All systems considered are pseudointegrable and thus
termediate between chaotic and regular~integrable! systems.
The term ‘‘pseudointegrable’’ can best be described wh
looking at the related billiard problem. There, we conside
particle that moves freely in thexy plane inside the consid
ered system and that is elastically reflected at the bounda
Pseudointegrable billiards have many features of integra
systems, and the additional property of ‘‘beam splitting
Like integrable systems, pseudointegrable systems h
polygon enclosures whose angles are rational multiples op.
Unlike integrable systems, neighboring trajectories
pseudointegrable billiards can split at certain singular poi
An example is the salient corners of the drum as illustrate
05624
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Fig. 1~b!. The spectral fluctuations of the related eigenva
problem are described by Poisson statistics for integra
systems and by Wigner statistics for chaotic systems~see
below!, whereas pseudointegrable systems are intermed
between the two.

The geometry of rational polygon billiards with angle
pni /mi , i 51, . . . ,k, can be described by the genus numb
@10,11#

g511
M

2 (
i 51

k
ni21

mi
, ~3!

whereM is the least common multiple of themi . The tra-
jectories of a particle in a polygon billiard are restricted to
two-dimensional surface in phase space. For an integr
billiard, g51 and the trajectories lie on an invariant torus
phase space, while for pseudointegrable billiards,g.1 and

FIG. 1. ~a! The fractal generator.~b! and ~c! fractal drum and
large fractal drum of first generation.~d! Fractal drum of third gen-
eration.~The large fractal drum of the third generation is not sho
for technical reasons.! In ~b! the principle of beam splitting at a
salient corner is illustrated: Depending on whether a particle arr
on the left- or on the right-hand side of the corner, it is reflected
two different directions. The fractal dimension of the perimeter
D f5 ln 8/ln 453/2.
0-2
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ENERGY FLUCTUATIONS OF PSEUDOINTEGRABLE . . . PHYSICAL REVIEW E 64 056240
is equal to the number of holes in this surface. The syste
in @14# had values ofg<20, whereas in this work system
with g up to 1000 are considered.

Fractal drums show several bands of quasidegenera
which correspond to surface states that seem to be loca
in the sense that their wave amplitudes occupy only so
percent of the system size. This is a common feature of
terministic fractals, which should not exist in random fract
and were described in@16#. On the other hand, pseudoint
grable systems are expected to show level repulsion a
inherent feature@10–12#, which is not in line with localiza-
tion. In this sense, fractal drums are more complicated t
other pseudointegrable systems and it is not clear at a
their spectra are completely described by the genus numbg
or if other features like scaling surface roughness, local
tion, or the asymptotic shape of the system play a role.

III. DENSITY OF STATES

All drums of thenth generation are constructed, starti
from a discretized square of lengthLgen5Zgena, which can
be considered as a fractal drum of zeroth order. Here,a is the
lattice constant andZgen counts the segments per side. A
drums of the sameLgen possess the same area. In order
discuss the results on a single frequency scale, we norm
them by v05A2pc/Lgen, which is the fundamental fre
quency of a square membrane of side lengthLgen under Di-
richlet boundary conditions:

Vn,n
2 [

vn,n
2

v0
2

5
vn,n

2

2p2c2/Lgen
2

. ~4!

In the calculations,m, k, a, and thus the sound velocityc
5Ak/m are set to unity.

An approximation for the integrated density of stat
~IDOS! N(V2) is given by Weyl’s conjecture@17–19#,
which therefore also serves as an estimation, if the comp
eigenvalues are reasonable. For a two-dimensional sys
the first term of Weyl’s conjecture is proportional to the su
face of the membrane (;V2), and the second term is pro
portional to the perimeterLG . The higher-order terms con
tain, e.g., contributions of holes and corners of the syst
With these terms, Weyl’s conjecture can be written in o
units as

N~V2!5~p/2!V26~A2LG!/~4L !V1Ncorner

1~higher-order terms!, ~5!

where in the second term the1 applies for Neumann and th
2 for Dirichlet boundary conditions. According to@18# the
contributions for corners of anglesp/2 and 3p/2 yield
Ncorner(p/2)51/16 and Ncorner(3p/2)525/144, which is
non-negligible for the third-order drums. Note that Eq.~5!
cannot be used for real mathematical fractals with infin
perimeter, where the second term has to be replaced
term proportional toVD f with the Minkowski dimensionD f
of the perimeter@17,19#. Note also that Weyl’s formula wa
05624
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derived for continuous and not for discrete systems. A par
theoretical analysis of the spectrum of a discrete system
been proposed by Fisher@20#, but does not lead to an equiva
lent of Weyl’s formula for discrete lattices. This means th
the comparison of our numerical results with Weyl’s formu
is only an approximation, particularly in the limit of hig
frequencies, where the discrete nature of the lattice beco
especially important.

Figure 3 shows the computed IDOSN(V2) for the sys-
tems ofLgen5256 andn51 and 3 for about the lowest 300
eigenvalues under Dirichlet and Neumann boundary con
tions. The results are compared to Weyl’s approximation
cluding the corner terms. Despite the discrete character o
systems, the coincidence with Weyl’s formula is good, in
cating the applicability of the Lanczos algorithm. With in
creasing length of the boundaries,N(V2) increases unde
Neumann and decreases under Dirichlet boundary co
tions. There are, however, several steplike increases in
IDOS at special frequencies, which cause deviations fr
Weyl’s formula and can be better seen in the insets of Fig
where the IDOS is displayed for several selected interv
The increases are caused by an accumulation of sur
states, that are ‘‘quasidegenerate.’’ For the low-freque
spectrum of symmetric drums under Neumann bound
conditions, this has already been described in@5#. Figure 3
shows that quasidegeneracies also exist in nonsymm
drums, under Dirichlet conditions, and also for higher fr
quencies. Surface states are situated close to the bounda
small pores. As there are many very similar small po
along the boundary~even if not equivalent under a symmet
operation!, there exist many eigenmodes with very simil
energy. This effect arises at several different energy valu
corresponding to several length scales in the fractal ge
etry, and is much stronger under Neumann boundary co

FIG. 2. Geometries of the pseudointegrable systems that
calculated for comparison:~a! and ~b! simple systems,~c! rough
structures, and~d! step structures. The systems of~c! and ~d! are
calculated for different stages of surface roughness.
0-3
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STEFANIE RUSS PHYSICAL REVIEW E 64 056240
tions, which can vibrate freely. However, smaller stepli
increases are also visible under Dirichlet conditions. T
quasidegeneracies are not included in Weyl’s formula~which
is smooth! and might be due to higher-order terms.

IV. LEVEL STATISTICS

Level statistics is a powerful tool for determining if
system shows regular~integrable! or chaotic behavior. First
the probabilityP(s) of finding two consecutive eigenvalue
with a given distances is considered. Here,s is the normal-
ized distance,s5(Vn

22Vn21
2 )/D, whereVn

2 is the nth ei-
genvalue andD is the mean eigenvalue spacing in the co
sidered frequency range. Normalization or ‘‘unfolding
makess independent of details of the considered syste
like, e.g., its microscopic size. Details of the unfolding a
explained in@21,22#. For systems of infinite size, two cha

FIG. 3. Integrated density of states~IDOS! for fractal drums of
n51 andn53 with ~a! Dirichlet and~b! Neumann boundary con
ditions, plotted versus the normalized eigenvaluesV25v2/v0

2 ac-
cording to Eq.~4!. The solid lines show the numerical results a
the dashed lines refer to Weyl’s formula. The insets show the s
like increases in the IDOS for several selected frequency interv
05624
e
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acteristic limiting situations can be distinguished. For chao
systems with extended states, the level spacing distribu
P(s) shows the universal random matrix theory result, wh
is well approximated by the Wigner surmisePW(s)
5(p/2)s exp@2ps2/4#. For regular systems or for localize
states, on the other hand, it shows the Poisson behavio
uncorrelated eigenvalues,PP(s)5exp@2s#. Localized states
are uncorrelated~at infinite system size! and therefore always
approach the Poisson distribution with increasing syst
size. Therefore, level statistics is often used to distingu
between localized and extended states in disordered sys
@23#. It is instructive to apply this method to fractal drums

The results are shown in Fig. 4. In Figs. 4~a! and 4~b!,
P(s) for fractal drums of the first and third generations und
Dirichlet boundary conditions is shown for about 10 0
eigenstates in the frequency range of 1000<V2<7000.
There are no qualitative differences from the Neumann ca
which is therefore not shown. For the first generation,
behavior is intermediate between the Wigner and the Pois
distributions. This can best be seen in the range of lar
distancess.2, where the values of the histograms lie b
tweenPP(s) andPW(s). It can be recognized that the distr
bution approaches the Wigner distribution when pass
from the first to the third generation. In Figs. 4~c,d!, we look
at the surface statesV2'1400 of n53 under Neumann
boundaries. As they occupy only a small portion of the to
system, they could be uncorrelated and thus obey the Poi
distribution. Indeed, even if this histogram contains only
states, and should be considered as preliminary, we can
that it looks much more similar to the Poisson distributi

p-
ls.

FIG. 4. Level statistics histogramsP(s) for fractal drums of
different boundary conditions and fractal generations, plotted ve
the normalized distances between two consecutive eigenvalues.~a!
First generation, Dirichlet boundary conditions,~b! third generation,
Dirichlet boundary conditions,~c! third generation, surface state
under Neumann boundary conditions~about 20 quasidegenerat
surface states aroundV2'1400),~d! surface states under Neuman
boundary conditions for about 30 states of the large system of
third generation. The theoretical Poisson and Wigner distributi
are indicated by a dashed and a full line, respectively.
0-4
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ENERGY FLUCTUATIONS OF PSEUDOINTEGRABLE . . . PHYSICAL REVIEW E 64 056240
than the global histogram of the system. However, this
havior is not maintained when we increase the system s
The same surface states of the larger drum~as explained in
Fig. 1! show a distributionP(s), that is changed toward th
Wigner distribution. This indicates that the surface state
even if they occupy only some percent of the system siz
grow with the system and are therefore not really localiz
states. For a final conclusion, a better statistics should
achieved.

Instead of comparing the histograms, it is easier to ca
late the second half momentsI 05 1

2 ^s2&5 1
2 *0

`s2P(s)ds,
which lie between the two limiting valuesI 0

Wigner'0.637 and
I 0

Poisson51 @23#. This enables us to decide if the statistics
closer to Wigner or closer to Poisson by comparing just o
numberI 0. This has been done for all systems of Figs. 1 a
2 for about 15 separate energy intervals throughout
whole high-energy spectrum where in the first intervalV2

'3000~corresponding to level numbers around 5000) and
the last intervalV2'25 000 ~close to the end of the spec
trum!. Each interval contained about 500–1500 eigensta
In all systems,I 0 fluctuated withV2 around a mean value
but, apart from fluctuations, it showed no frequency dep
dence in the considered frequency range. Therefore, in
5, the averageI 0 for each system under Dirichlet~open sym-
bols! and under Neumann~filled symbols! boundaries is
plotted versus the genus numberg. The Wigner limit is in-
dicated by a straight line. Systems with small genus numb
g show intermediate behavior, in agreement with recent
sults of a numerical analysis on triangular billards under
richlet boundary conditions@24#, where systems with smallg
were found to obey a semi-Poisson statistics withI 050.75.
For increasingg, the results here provide strong eviden

FIG. 5. The dimensionless second half momentsI 0 ~averaged
over 15 intervals throughout the whole frequency spectrum! for
several different system geometries under Dirichlet~open symbols,
dotted error bars! and Neumann~filled symbols, straight lines as
error bars! boundary conditions are plotted versus the genus num
g of the systems. The different symbols indicate the geometrie
Figs. 1 and 2: fractal drums~triangles up!, large fractal drums~tri-
angles down!, rough structures~squares!, step structures~dia-
monds!, and simple structures~circles!.
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that the values ofI 0 of all systems considered move from th
Poisson toward the Wigner limit in quite the same wa
which is described solely byg. For g.20, the Wigner limit
lies inside the error bars~which are estimated by the fluctua
tions of I 0 between different frequency intervals!. For Neu-
mann boundary conditions,I 0 shows slightly smaller values
than in the Dirichlet case, but this effect is inside the er
bars.

The fractal drums of third order show no size dependen
i.e., the values ofI 0 are the same for the smaller and th
larger drums in all considered frequency intervals~apart
from fluctuations around the mean value!. Thich is also an
indication that no transition between localized and exten
states occurs. For the first generation, the values ofI 0 for the
larger drum already lie close to the Wigner limit, whereas
I 0 for the smaller drum are clearly higher. This size effe
reflects the larger number of corners of the larger drum
therefore only occurs for intermediate systems with smalg.
It is not related to localization.

The approach ofI 0 toward the Wigner limit with increas-
ing g is remarkable, as—contrary to the systems conside
in @14# which approached the Sinai billiard with increasin
surface roughness—the geometries of the systems her
not converge to the geometry of chaotic systems. So, for
pseudointegrable systems considered here, with right an
but for very different asymptotic shapes and different typ
of surface roughness~scaling or nonscaling!, I 0 approaches
the Wigner limit in a similar way as a function of the gen
numberg. It will be interesting to investigate the extent t
which thisg dependence is general and holds for all pseu
integrable systems.

V. CONCLUSIONS

The eigenvalues of two-dimensional pseudointegra
fractal drums have been investigated numerically by
Lanczos algorithm and analyzed by means of level statis
in the high-energy limit. For this purpose, the eigenva
distributionP(s) and the respective second half momentsI 0
were calculated, which have clearly defined values in
Poisson and in the Wigner limit. This calculation was do
for many energy intervals throughout the spectrum for le
numbers>5000. Comparing different system sizes, no tra
sition between localized and extended states was fou
Even if there exist many modes whose amplitudes are la
only in a very small section of the system, they seem to gr
when the system size is increased, and show level repuls
Then it was investigated if the level statistics of the frac
drums is closer to the Wigner or to the Poisson limit. F
comparison, several different pseudointegrable system
various geometries with nonscaling surface roughness w
analyzed as well. Systems with small surface roughness w
found to show intermediate behavior, in essential agreem
with @24#. With increasing irregularity of the boundary, th
I 0 of the systems here approaches the Wigner limit. T
approach seems to depend only on the genus numberg, be-
cause complicated fractal drums as well as simple syst
with nonscaling surface roughness fall onto the same se
ingly universal curve. Also, there are no qualitative diffe

er
of
0-5
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STEFANIE RUSS PHYSICAL REVIEW E 64 056240
ences between Neumann and Dirichlet boundary condit
and it seems unimportant if the asymptotic geometry w
more and smaller corners approaches a chaotic shape o

It should be emphasized that only systems with rig
angles were considered and it will be instructive to exte
this analysis to different ones and to see to what extent thg
dependence is general. The systems, considered even
large genus numbersg, are not chaotic and it will also be
interesting to perform different tests, such as, e.g., the le
dynamics under a change of a wall or the behavior of
va

.

en
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wave functions, to see, if this approach to chaotic behavio
also found for other quantities.
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