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Energy fluctuations of pseudointegrable systems with growing surface roughness
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The eigenfrequencies of two-dimensional systems with fractal boundaries and with nonscaling rough bound-
aries are calculated numerically by the Lanczos algorithm and analyzed by means of level statistics. The
systems are pseudointegrable and the fluctuations of their eigenvalue spectra show a global statistical behavior
between the Poisson and the Wigner distributions. With increasing irregularity of the boundary, the systems
approach the Wigner limit and the results seem to depend only on the genus number of the geometry and not
on details, such as the asymptotic shape of the geometry, the type of rou¢duadisgy or nonscalingand the
boundary conditiongNeumann or Dirichlet No transition between localized and extended states is found in
fractal drums.
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[. INTRODUCTION some percent of the total system are really localized, i.e., if
their localization lengths approach a constant when the sys-
The vibrational behavior of geometrically irregular ob- tem size is increased. Second, fractal drums are so-called
jects has been a subject of considerable interest. This intere@geudointegrable systenj40,11] (see below, which are
arises from both a fundamental and a practical point of viewgeometrically intermediate between regular and chaotic sys-
because many systems with strongly irregular geometries eems. Although pseudointegrable systems have attracted a lot
ist in nature. Their physical properties, such as, e.g., theipf attention in recent yearfs2—14, up to now, only rela-
vibrational or electronic behavior, differ in many cases fromtively simple pseudointegrable systems have been investi-
those of their regular counterparts. Fractal geomglthper- ~ gated. These systems showed comparatively small surface
mits a description of many irregular systems as well-definedoughness. The boundaries were nonfractal and no localized
geometrical objects, if the physical properties of the considstates occurred. For a particular pseudointegrable geometry,
ered objects are due to the hierarchical character of theiwhere the chaotic Sinai shape was approached by a certain
geometry[2]. number of corners, it was found numerically that with grow-
Here, we are interested in the vibrational and electronidng surface roughness the systems showed more and more
behavior of surface fractaléfractal drums”) [3]. These are chaotic behaviof14]. The analysis was restricted to the low-
normal Euclidean systems, whose boundaries have fractilequency spectrum and it is not yet clear if the results are
shapes. Their vibrational excitations have been referred to &Jso valid in the regime where the wavelengths are small
“Dirichlet fractinos” or “Neumann fractinos,” depending €nough to resolve the edges. In this paper we want to inves-
on their boundary conditions. Their energy spectra and localtigate the energy fluctuations of the whole high-energy spec-
ization properties are clearly distinct from those of systemdrum and see if details of the geometry, like, e.g., the fractal
with smooth boundaries. This has been demonstrated by nghape or the asymptotic shape of the system, have some spe-
merical simulation§4—6] as well as by experiments on lig- Cific consequences or if the behavior of the level statistics
uid crystal fims[6] and on acoustic cavities’]. Among depends solely on the number of edges. For this purpose,
other things, we are interested in the localization propertie§everal pseudointegrable systems of various geometries are
of fractal drums, which are most important when applied tocompared to the fractal drums. The paper is organized as
real systems. For example, the nanostructures in porou8llows. In Sec. II, the model systems and the various geom-
silica can be modeled to some extent by fractal drums undegtries are explained. In Sec. lll, the density of states of the
Dirichlet boundary conditions}' =0, along the boundary. In fractal drums is shown. Finally, in Sec. IV, the level statistics
this case, the relevant electron states are localized, in th@sults for the fractal drums and several other systems under
sense that they occupy 0n|y a small portion of the total SysDiriChlet and Neumann bOUndary conditions are Compared
tem volume. This leads to a broadening of the band gap an@nd discussed.
could explain the observed luminescence of porous diita
When considering the vibrational modes in irregular macro-
scopic fractal-shaped acoustic cavities and membranes, it
was also found that localization effects have important con- Let us consider a membrane that lies in #yeplane and
sequences for the acoustic behavior. When this localizatiomibrates in thez direction. When the restoring forces are
is enhanced, viscous damping is increag&d]. considered as scalar, the vibrations of this membrane are
In this paper, the electronic and vibrational properties ofdescribed by the Helmholtz equation
fractal drums are studied by the methods of level statistics,
which is an important tool in quantum chaos. We concentrate »?
on those fractal drums that have been used earlier in Refs. AV (X,y)=— —;‘I’n(X,y), (1)
[4-9]. First, we want to see if the states that occupy only

IIl. MODEL SYSTEMS
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where ¥ ,(x,y) is the n®" eigenfunction,enzwﬁ the corre-
sponding eigenvalue, ardthe sound velocity of the mem- —_— —* 4,——|_|—
brane. This equation has the same form as the stationary (a)

Schralinger equation with zero potentidl=0 inside the

drum. Therefore, under Dirichlet boundary conditions, which

refer to infinite potential on the boundary it can also describe

an electron in an infinite potential well. In this case, one has >

to replacew?/c? by 2uE, /42, whereu is the electron mass 7™\

andE, the energy eigenvalue.

For the numerical calculations, E) is discretized on a
square lattice. At each lattice pointwe put identical masses
m, which are coupled by linear nearest-neighbor sprikgs b
The discretized form of Eq(1) can be written as o (b) (c)
=k/m)

%[w +1)D+ WL (= 1)+ P, j+ 1)+ Wi, —1)
— 4 (i,))]= — 0iW (i), (2)

where the neighbor term# ,(i+1,j), ¥,(i,j£1) are the
values of the discretized eigenfunctioh,, at neighboring
sites of ¥ ,(i,j). Equations(1) and (2) are connected by a
second order Taylor expansion of the neighbor terms. This
problem can be reduced to the diagonalization of a symmet-
ric matrix, which is carried out by the Lanczos algorithm
[15], a numerical procedure to compute eigenvalues and
eigenvectors of sparddxX N matrices by reducing them it-
eratively to a tridiagonal form, for which effective algo-
rithms exist. The eigenvalues of several rough geometries are
calculated numerically over the whole frequency range under d
Dirichlet and Neumann boundary conditions and their spec- (d)

tra are analyzed systematically by means of level statistics. FIG. 1. (a) The fractal generatorb) and (c) fractal drum and

In Fig. 1 Fhe fractal (_jrums und_er study are shown; they ar_elaarge fractal drum of first generatiofd) Fractal drum of third gen-
characterized by their boundaries. Here, the same boundariggytion (The large fractal drum of the third generation is not shown
as in Refs[4-9] are used. To obtain the fractal drums, thefor technical reasonsin (b) the principle of beam splitting at a
generatolcf. Fig. 1(@)] is applied several times to two dif- sajient corner is illustrated: Depending on whether a particle arrives
ferent sides of a regular square. As a result, we get Nnonsymn the left- or on the right-hand side of the corner, it is reflected in
metric fractal drums of different generationgwith v up to  two different directions. The fractal dimension of the perimeter is
3 in this work and therefore different stages of surfaceD;=In8/In4=3/2.

roughness. For the study of the localization properties, larger

drums are also studied, as shown in Figc)Ifor the first  Fig. 1(b). The spectral fluctuations of the related eigenvalue
generation. In Fig. 2 simpler systems with varying geometryproblem are described by Poisson statistics for integrable
and surface roughness are shown that are studied for corgystems and by Wigner statistics for chaotic systdsese
parison. For technical reasons to do with the Lanczos algobelow), whereas pseudointegrable systems are intermediate

rithm, all systems are unsymmetric. between the two.
All systems considered are pseudointegrable and thus in- The geometry of rational polygon billiards with angles
termediate between chaotic and regylategrable systems. an;/m;, i=1,... k, can be described by the genus number

The term “pseudointegrable” can best be described whef10,11

looking at the related billiard problem. There, we consider a

particle that moves freely in they plane inside the consid-

ered system and that is elastically reflected at the boundaries. g=1+
Pseudointegrable billiards have many features of integrable

systems, and the additional property of “beam splitting.”

Like integrable systems, pseudointegrable systems hawghereM is the least common multiple of the;. The tra-
polygon enclosures whose angles are rational multiples. of jectories of a particle in a polygon billiard are restricted to a
Unlike integrable systems, neighboring trajectories intwo-dimensional surface in phase space. For an integrable
pseudointegrable billiards can split at certain singular pointsbilliard, g=1 and the trajectories lie on an invariant torus in
An example is the salient corners of the drum as illustrated ipphase space, while for pseudointegrable billiagis,1 and
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is equal to the number of holes in this surface. The system:
in [14] had values ofy<20, whereas in this work systems
with g up to 1000 are considered.

Fractal drums show several bands of quasidegeneracie
which correspond to surface states that seem to be localize
in the sense that their wave amplitudes occupy only somd
percent of the system size. This is a common feature of de
terministic fractals, which should not exist in random fractals @ (b)
and were described ifiL6]. On the other hand, pseudointe-
grable systems are expected to show level repulsion as a
inherent featur¢10—12, which is not in line with localiza-
tion. In this sense, fractal drums are more complicated thar
other pseudointegrable systems and it is not clear at all if
their spectra are completely described by the genus nugber
or if other features like scaling surface roughness, localiza-
tion, or the asymptotic shape of the system play a role.

Ill. DENSITY OF STATES ©) (&)

All drums of the vth generation are constructed, starting FIG. 2. Geometries of the pseudointegrable systems that are

from a discretized square of lengthe=Zge@, which can  cajcyjated for comparison@) and (b) simple systems(c) rough
be considered as a fractal drum of zeroth order. Hei®the  stryctures, andd) step structures. The systems (of and (d) are

lattice constant and g, counts the segments per side. All calculated for different stages of surface roughness.
drums of the samé 4, possess the same area. In order to
discuss the results on a single frequency scale, we normalize

them by wo=2c/Lge,, Which is the fundamental fre- ygrived for continuous and not for discrete systems. A partial
quency of a square membrane of side lenigily, under Di-  {heoretical analysis of the spectrum of a discrete system has
richlet boundary conditions: been proposed by Fishg20], but does not lead to an equiva-
lent of Weyl's formula for discrete lattices. This means that
the comparison of our numerical results with Weyl's formula
is only an approximation, particularly in the limit of high
frequencies, where the discrete nature of the lattice becomes

In the calculationsm, k, a, and thus the sound velocity ~ €specially important.
= Jk/m are set to unity. Figure 3 shows the computed IDAEQ?) for the sys-

An approximation for the integrated density of states®®MS OfLger=256 andv=1 and 3 for about the lowest 3000
(IDOS) N(Q?) is given by Weyl's conjecturd17—19 eigenvalues under Dirichlet and Neumann boundary condi-
which therefore also serves as an estimation, if the computePns- The results are compared to Weyl's approximation in-
eigenvalues are reasonable. For a two-dimensional systerﬁ',“d'”g the corner terms. Despite the discrete character of the
the first term of Weyl's conjecture is proportional to the sur-SYStems, the coincidence with Weyl's formula is good, indi-
face of the membrane~(Q?), and the second term is pro- Cating the applicability of the Lanczos algorithm. With in-
portional to the perimetet .. The higher-order terms con- C€reasing length of the boundariel¥(Q?) increases under
tain, e.g., contributions of holes and corners of the systerfy€Umann and decreases under Dirichlet boundary condi-

With these terms, Weyl's conjecture can be written in ourtions. There are, however, several steplike increases in the
units as ’ IDOS at special frequencies, which cause deviations from

Weyl's formula and can be better seen in the insets of Fig. 3,
where the IDOS is displayed for several selected intervals.

2 2
wﬂ,V

(4)

n, = :
" w0y 2m%c Léen

N(QZ):(W/Z)QZi(\/ELF)/(4L)Q+Ncomer The increases are ca_used by an accumulation of surface
states, that are “quasidegenerate.” For the low-frequency
+ (higher-order terms (5) spectrum of symmetric drums under Neumann boundary

conditions, this has already been describedl5ih Figure 3
where in the second term the applies for Neumann and the shows that quasidegeneracies also exist in nonsymmetric
— for Dirichlet boundary conditions. According {d8] the  drums, under Dirichlet conditions, and also for higher fre-
contributions for corners of angles/2 and 3m/2 yield quencies. Surface states are situated close to the boundary in
Neomel 7/2)=1/16 and Nome(37/2)= —5/144, which is small pores. As there are many very similar small pores
non-negligible for the third-order drums. Note that E§) along the boundargeven if not equivalent under a symmetry
cannot be used for real mathematical fractals with infiniteoperation, there exist many eigenmodes with very similar
perimeter, where the second term has to be replaced by energy. This effect arises at several different energy values,
term proportional tad)Pf with the Minkowski dimensiorD;  corresponding to several length scales in the fractal geom-
of the perimetef17,19. Note also that Weyl's formula was etry, and is much stronger under Neumann boundary condi-
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NI (b) FIG. 4. Level statistics histogramB(s) for fractal drums of
different boundary conditions and fractal generations, plotted versus
N(QZ) / 600 v=23 the normalized distancebetween two consecutive eigenvalues.
_ First generation, Dirichlet boundary conditiofis) third generation,
/ v=1 Dirichlet boundary conditions(c) third generation, surface states
2000 T 1 under Neumann boundary conditioigbout 20 quasidegenerate
. . 400 surface states arourfd?~ 1400),(d) surface states under Neumann
2ab Q 300 /:/’1300 @& 1500‘ boundary conditions for about 30 states of the large system of the
/,’::,’/N(Qz) ‘ third generation. The theoretical Poisson and Wigner distributions
! are indicated by a dashed and a full line, respectively.
1000 + /,:// 5600 L /’lJ\ ]
l acteristic limiting situations can be distinguished. For chaotic
2400 systems with extended states, the level spacing distribution
0 ‘ ‘ P(s) shows the universal random matrix theory result, which
0 800 1000 1800 2 is well approximated by the Wigner surmisB(s)

= (m/2)s exd — ws?/4]. For regular systems or for localized
FIG. 3. Integrated density of statd®OS) for fractal drums of  states, on the other hand, it shows the Poisson behavior for
v=1 andv=3 with (a) Dirichlet and(b) Neumann boundary con- uncorrelated eigenvalueBp(s)=exd —s]. Localized states
ditions, plotted versus the normalized eigenval¥s= w?/w§ ac-  are uncorrelatetat infinite system sizeand therefore always
cording to Eq.(4). The solid lines show the numerical results and gpproach the Poisson distribution with increasing system
the dashed lines refer to Weyl's formula. The insets show the stepsize. Therefore, level statistics is often used to distinguish
like increases in the IDOS for several selected frequency intervalgyetween localized and extended states in disordered systems
[23]. It is instructive to apply this method to fractal drums.
The results are shown in Fig. 4. In Figda®and 4b),
tions, which can vibrate freely. However, smaller steplikep(s) for fractal drums of the first and third generations under
increases are also visible under Dirichlet conditions. ThQ:)II'IChlet boundary conditions is shown for about 10000
quasidegeneracies are not included in Weyl's fornfwlhich eigenstates in the frequency range of 18@B%<7000.

is smooth and might be due to higher-order terms. There are no qualitative differences from the Neumann case,
which is therefore not shown. For the first generation, the
IV. LEVEL STATISTICS behavior is intermediate between the Wigner and the Poisson

distributions. This can best be seen in the range of larger

Level statistics is a powerful tool for determining if a distancess>2, where the values of the histograms lie be-
system shows reguldintegrable or chaotic behavior. First, tweenPp(s) andP,(s). It can be recognized that the distri-
the probabilityP(s) of finding two consecutive eigenvalues bution approaches the Wigner distribution when passing
with a given distance is considered. Heres is the normal-  from the first to the third generation. In Figgc4l), we look
ized distances=(Q2-Q2_,)/A, whereQ2 is thenth ei-  at the surface state®2~1400 of v=3 under Neumann
genvalue and\ is the mean eigenvalue spacing in the con-boundaries. As they occupy only a small portion of the total
sidered frequency range. Normalization or “unfolding” system, they could be uncorrelated and thus obey the Poisson
makess independent of details of the considered systemdistribution. Indeed, even if this histogram contains only 20
like, e.g., its microscopic size. Details of the unfolding arestates, and should be considered as preliminary, we can see
explained in[21,22. For systems of infinite size, two char- that it looks much more similar to the Poisson distribution
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08— T " that the values of, of all systems considered move from the
Poisson toward the Wigner limit in quite the same way,
which is described solely by. For g> 20, the Wigner limit
lies inside the error barsvhich are estimated by the fluctua-
tions of I, between different frequency intervalé$-or Neu-
mann boundary conditionsg shows slightly smaller values
than in the Dirichlet case, but this effect is inside the error
bars.
: The fractal drums of third order show no size dependence,
T ‘ i.e., the values of, are the same for the smaller and the
$ I - larger drums in all considered frequency intervédpart
-+ %— from fluctuations around the mean valu&hich is also an
indication that no transition between localized and extended
, X states occurs. For the first generation, the valudg @dr the
10 100 g 1000 larger drum already lie close to the Wigner limit, whereas the
Iy for the smaller drum are clearly higher. This size effect
FIG. 5. The dimensionless second half mometsaveraged reflects the larger number of corners of the larger drum and
over 15 intervals throughout the whole frequency spectrfon  therefore only occurs for intermediate systems with small
several different system geometries under Dirickigten symbols, |t is not related to localization.
dotted error bagsand Neumanrfilled symbols, straight lines as The approach of, toward the Wigner limit with increas-
error barg boundary conditions are plotted versus the genus numbelrng g is remarkable, as—contrary to the systems considered
g of the systems. The different symbols indicate the geometries of, [14] which approached the Sinai billiard with increasing
Figs. 1 and 2: fractal drum@riangles up, large fractal drumstri- surface roughness—the geometries of the systems here do
angles dowh. rough structurgs(squares step_ structureg(dia- not converge to the geometry of chaotic systems. So, for the
mond3, and simple structureeircles. pseudointegrable systems considered here, with right angles
but for very different asymptotic shapes and different types
of surface roughnes&caling or nonscaling |, approaches
than the global histogram of the system. However, this bethe wigner limit in a similar way as a function of the genus
havior is not maintained when we increase the system sizgumberg. It will be interesting to investigate the extent to

The same surface states of the larger di@s explained in  which thisg dependence is general and holds for all pseudo-
Fig. 1) show a distributiorP(s), that is changed toward the integrable systems.

Wigner distribution. This indicates that the surface states—

even if they occupy only some percent of the system size—

grow with the system and are therefore not really localized V. CONCLUSIONS

states. For a final conclusion, a better statistics should be |4 eigenvalues of two-dimensional pseudointegrable

achieved. , , o , fractal drums have been investigated numerically by the
Instead of comparing the h|stogr?m§, Itis easier to caleu anczos algorithm and analyzed by means of level statistics
late the second half momenty=3(s)=3/¢S"P(S)ds, i the high-energy limit. For this purpose, the eigenvalue
which lie between the two limiting valugg"®"~0.637 and gistribution P(s) and the respective second half momelts
15°°%°= 1 [23]. This enables us to decide if the statistics iswere calculated, which have clearly defined values in the
closer to Wigner or closer to Poisson by comparing just ongPoisson and in the Wigner limit. This calculation was done
numberl,. This has been done for all systems of Figs. 1 andior many energy intervals throughout the spectrum for level
2 for about 15 separate energy intervals throughout th@umbers=5000. Comparing different system sizes, no tran-
whole high-energy spectrum where in the first inter@®  sition between localized and extended states was found.
~3000(corresponding to level numbers around 5000) and irEven if there exist many modes whose amplitudes are large
the last interval(}?~ 25000 (close to the end of the spec- only in a very small section of the system, they seem to grow
trum). Each interval contained about 500—1500 eigenstatesvhen the system size is increased, and show level repulsion.
In all systems), fluctuated withQ? around a mean value, Then it was investigated if the level statistics of the fractal
but, apart from fluctuations, it showed no frequency dependrums is closer to the Wigner or to the Poisson limit. For
dence in the considered frequency range. Therefore, in Figomparison, several different pseudointegrable systems of
5, the averagé, for each system under Dirichlépen sym-  various geometries with nonscaling surface roughness were
bols) and under Neumanifilled symbolg boundaries is analyzed as well. Systems with small surface roughness were
plotted versus the genus numlgerThe Wigner limit is in-  found to show intermediate behavior, in essential agreement
dicated by a straight line. Systems with small genus numberwith [24]. With increasing irregularity of the boundary, the
g show intermediate behavior, in agreement with recent ret, of the systems here approaches the Wigner limit. The
sults of a numerical analysis on triangular billards under Di-approach seems to depend only on the genus numkdse-
richlet boundary conditiong24], where systems with smajl  cause complicated fractal drums as well as simple systems
were found to obey a semi-Poisson statistics Wigk 0.75.  with nonscaling surface roughness fall onto the same seem-
For increasingg, the results here provide strong evidenceingly universal curve. Also, there are no qualitative differ-
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ences between Neumann and Dirichlet boundary condition&ave functions, to see, if this approach to chaotic behavior is
and it seems unimportant if the asymptotic geometry withalso found for other quantities.
more and smaller corners approaches a chaotic shape or not.

It should be emphasized that only systems with right
angles were considered and it will be instructive to extend ACKNOWLEDGMENTS
this analysis to different ones and to see to what extengthis
dependence is general. The systems, considered even with | gratefully acknowledge financial support by the
large genus numberg, are not chaotic and it will also be Deutsche Forschungsgemeinschaft. | would like to thank
interesting to perform different tests, such as, e.g., the leveArmin Bunde, Jan Kantelhardt, and Bernard Sapoval for
dynamics under a change of a wall or the behavior of thevaluable discussions.
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